Author's personal copy Radiative heat transfer in enhanced hydrogen outgassing of glass
نویسندگان
چکیده
This paper explores the physical mechanisms responsible for experimental observations that led to the definition of ‘‘photo-induced hydrogen outgassing of glass’’. Doped borosilicate glass samples were placed inside an evacuated silica tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here, sample and silica tube were modeled as plane-parallel slabs exposed to furnace or to lamp thermal radiation. Combined conduction, radiation, and mass transfer were accounted for by solving the one-dimensional transient mass and energy conservation equations along with the steady-state radiative transfer equation. All properties were found in the literature. The experimental observations can be qualitatively explained based on conventional thermally activated gas diffusion and by carefully accounting for the participation of the silica tube to radiation transfer along with the spectral properties of the silica tube and the glass samples. In brief, the radiation emitted by the incandescent lamp is concentrated between 0.5 and 3.0 mm and reaches directly the sample since the silica tube is nearly transparent for wavelengths up to 3.5 mm. On the contrary, for furnace heating at 400 C, the silica tube absorbs a large fraction of the incident radiation which reduces the heating rate and the H2 release rate. However, between 0.8 and 3.2 mm undoped borosilicate does not absorb significantly. Coincidentally, Fe3O4 doping increases the absorption coefficient and also reacts with H2 to form ferrous ions which increase the absorption coefficient of the sample by two orders of magnitude. Thus, doped and reacted samples heat up much faster when exposed to the heating lamp resulting in the observed faster response time and larger H2 release rate. a 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights
منابع مشابه
Radiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کاملHeat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method
The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...
متن کاملComputational Study of Radiative and Convective Heat Transfer in a Cylindrical Combustion Chamber
In this paper, the effect of cold air on the fluid flow inside the cylindrical combustion chamber and its wall temperature distribution have been studied computationally, taking into account the effect of radiative heat transfer from hot gases. The results have been compared with the case that radiative heat transfer was neglected. It is observed that the reattachment length increases when incr...
متن کاملEffect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer
In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...
متن کاملANALYSIS OF COMBINED CONDUCTION AND RADIATION HEAT TRANSFER IN A RECTANGULAR FURNACE INCLUDING TWO FLAMES
Abstract: The present study deals the theoretical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and scattering gray medium within two-dimensional square furnace including two flames. The gray radiative medium is bounded by isothermal walls which are considered to be opaque, diffuse and gray. The well known discrete ordinate method (DOM...
متن کامل